| Contenidos de Wikipedia en español bajo licencia CC BY-SA 4.0 ⇔ Mapas de OpenStreetMap bajo licencia ODbL |
Física


La física (del latín physica, y este del griego antiguo φυσικός physikós «natural, relativo a la naturaleza»)[3] es la ciencia natural que estudia la naturaleza de los componentes y fenómenos más fundamentales del Universo como lo son la energía, la materia, la fuerza, el movimiento, el espacio-tiempo, las magnitudes y propiedades naturales fundamentales y las interacciones fundamentales.[4][5][6]
El alcance de la física es extraordinariamente amplio y puede incluir estudios tan diversos como la mecánica cuántica, la física teórica o la óptica.[7] La física moderna se orienta a una especialización creciente, donde las investigaciones y los grupos de investigación, tienden a enfocar áreas particulares más que a ser universalistas, como lo fueron Albert Einstein o Lev Landáu, que trabajaron en una multiplicidad de áreas.[8][9][10]
La física es tal vez la más antigua de todas las disciplinas académicas, ya que la astronomía es una de sus subdisciplinas, y tanto ésta como la aplicación de las matemáticas al estudio de la naturaleza, también comenzó hace más de dos mil años con los primeros trabajos de filósofos griegos.[11][12][13] En los últimos dos milenios, la física fue considerada parte de lo que ahora llamamos filosofía, química y ciertas ramas de las matemáticas y la biología, pero durante la revolución científica en el siglo XVII se convirtió en una ciencia moderna, única por derecho propio.[14][15] Sin embargo, en la actualidad la interdisciplinariedad, especialmente en algunas esferas de la física, química y matemática, han dado lugar tanto a avances, como a ramas difusas, como la química cuántica, por lo que los límites de la física con otras ramas de la ciencia tienden a ser cada vez más difíciles de distinguir, y hacia la unidad de la ciencia.[16][17][18][19][20][21][22][23] La formulación de las teorías sobre las leyes que gobiernan el Universo, como se indicaba, ha sido un objetivo central de la física desde tiempos remotos, con la filosofía griega, y antecedentes de aplicación del método científico como los de Arquímedes, y, actualmente, la filosofía del empleo sistemático de experimentos cuantitativos de observación y prueba como fuente de verificación. La clave del desarrollo histórico de la física incluye hitos como la ley de la gravitación universal y la mecánica clásica de Newton, la comprensión de la naturaleza de la electricidad y su relación con el magnetismo de Faraday , la teoría de la relatividad especial y teoría de la relatividad general de Einstein, el desarrollo de la termodinámica con James Prescott Joule y Sadi Carnot y el modelo de la mecánica cuántica a los niveles de la física atómica y subatómica con Louis-Victor de Broglie, Heisenberg y Erwin Schrödinger.[24]

Esta disciplina incentiva competencias, métodos y una cultura científica que permitan comprender nuestro mundo físico, para luego actuar sobre él, incluso hubo intentos para aplicar conceptos de las nuevas teorías emergentes de principios del siglo XX a la observación e investigación de la realidad.[25] Sus procesos cognitivos se han convertido en protagonistas del saber y hacer científico y tecnológico general, ayudando a conocer, teorizar, experimentar y evaluar actos dentro de diversos sistemas, clarificando causa y efecto en numerosos fenómenos, mediante el empleo del método científico y principalmente de la metodología experimental y positivista, con un amplio auge a partir del trabajo conjunto entre diversas ramas, y, especialmente, entre la física y la tecnología (cuando se ha logrado).[14][16][17][26][27]
De esta manera, se puede considerar con cierta seguridad y carácter de verdad, que la física contribuye a la ciencia, a la conservación y preservación de recursos, y al desarrollo y el avance tecnológico, social y cultural, facilitando la toma de conciencia y la participación efectiva y sostenida de la sociedad en la resolución de sus propios problemas.[14][28][29][30]
Como toda ciencia, la Física busca que sus conclusiones puedan ser verificables y replicables mediante experimentos, es decir, se vale del método científico para poder establecer relaciones de causalidad (fundamentalmente en este caso) y también correlaciones, permitiendo demostrar sus teorías y explicar las observaciones. De este modo se pretende que pueda realizar predicciones de experimentos futuros basados en observaciones previas. Sin embargo, dada la amplitud del campo de estudio de la física, así como su desarrollo histórico con relación a otras ciencias, se la puede considerar la ciencia fundamental o central, ya que incluye dentro de su campo de estudio a la química, la biología y la electrónica, además de explicar sus fenómenos, al tratar de explicar las leyes fundamentales de la naturaleza.[31][32][33]
Se puede afirmar, pues, que la física no es solo una ciencia teórica; es también una ciencia experimental,[31] y, en su intento de describir los fenómenos naturales con exactitud y veracidad, ha llegado a límites impensables: el conocimiento actual abarca desde la descripción de partículas fundamentales microscópicas[34][35] hasta el nacimiento de las estrellas en el universo[36][37][38] e incluso el poder conocer con una gran probabilidad lo que aconteció en los primeros instantes del nacimiento de nuestro universo,[39][40][41]por citar unos pocos campos.
Para poder probar sus teorías, así como por las dificultades que muchas veces entraña y las discusiones que han tenido lugar y han partido de la física teórica,[42][43][44][45][46]se han valido de instrumentos e ingenios diversos,[47][48][49][50][51] así como de los avances matemáticos,[33][52][53][54] pero también han dado lugar y propiciado el desarrollo de nuevos avances tecnológicos. Por ejemplo, los avances en la comprensión del electromagnetismo, la física del estado sólido y la física nuclear llevaron directamente al desarrollo de nuevos productos que transformaron la sociedad actual, como la televisión, las computadoras, los electrodomésticos y las armas nucleares; los avances en termodinámica llevaron al desarrollo de la industrialización; y los avances en mecánica inspiraron el desarrollo del cálculo.[14][15][54][55]
Teorías básicas
Habiendo partido de una física genérica, con la finalidad de resolver las situaciones cotidianas y dar explicación a los eventos observados en la naturaleza[31]la física actual se divide en varias ramas, destacando la física teórica que se dedica al avance y desarrollo (y revisión) de la parte fundamental, sus teorías básicas. Cada una de estas teorías ha ido aportando diferentes aproximaciones al estudio de la naturaleza, el cosmos, y el origen y comportamiento del universo de los distintos elementos que lo integran. Por ejemplo, la teoría de la física clásica basada en las observaciones y principios de Newton y Cavendish entre otros, permitió describir con elevada precisión el movimiento de los objetos, partiendo de los principios de Newton o mecánica clásica, siendo aplicables o de precisión aceptable cuando se estudian objetos o fenómenos que se muevan a una velocidad mucho menor que la de la luz. Estas teorías siguen siendo áreas de investigación activa en la actualidad. La teoría del caos, un aspecto notable de la mecánica clásica, se descubrió en el siglo XX, tres siglos después de la formulación original de la mecánica clásica por Newton (1642-1727).
Estas teorías centrales son herramientas importantes para la investigación de temas más especializados, y son estudiadas en ingeniería y física, independientemente de su especialización. Entre ellas se encuentran la mecánica clásica, la mecánica cuántica, la termodinámica y la física estadística, el electromagnetismo y la relatividad especial.
En la física clásica
La física clásica incluye las ramas y las cuestiones tradicionales reconocidas y bien desarrolladas antes de principios del siglo XX: mecánica clásica, acústica, óptica, termodinámica y electromagnetismo. La mecánica clásica se ocupa de los cuerpos sobre los que actúan fuerzas y de los cuerpos en movimiento y puede dividirse en estática (estudio de las fuerzas sobre un cuerpo o cuerpos no sometidos a una aceleración), cinemática (estudio del movimiento sin tener en cuenta sus causas), y dinámica (estudio del movimiento y las fuerzas que lo afectan); la mecánica también puede dividirse en mecánica de sólidos y mecánica de fluidos (conocida conjuntamente como mecánica del continuo), esta última incluye ramas como la hidrostática, la hidrodinámica, la aerodinámica y la neumática. La acústica es el estudio de cómo se produce, controla, transmite y recibe el sonido.[56] Entre las ramas modernas importantes de la acústica se encuentran la ultrasónica, el estudio de las ondas sonoras de muy alta frecuencia más allá del alcance del oído humano; la bioacústica, la física de las llamadas y el oído de los animales,[57] y la electroacústica, la manipulación de las ondas sonoras audibles mediante la electrónica.[58]
La óptica, el estudio de la luz, se ocupa no solo de la luz visible sino también de la radiación infrarroja y la radiación ultravioleta, que presentan todos los fenómenos de la luz visible excepto la visibilidad, por ejemplo, la reflexión, la refracción, la interferencia, la difracción, la dispersión y la polarización de la luz. El calor es una forma de energía, la energía interna que poseen las partículas que componen una sustancia; la termodinámica se ocupa de las relaciones entre el calor y otras formas de energía. La Electricidad y el Magnetismo se han estudiado como una sola rama de la física desde que se descubrió la íntima conexión entre ellos a principios del siglo XIX: una corriente eléctrica da lugar a un campo magnético, y un campo magnético cambiante induce una corriente eléctrica. La electrostática, por otra parte, se ocupa de las cargas eléctricas en reposo, la electrodinámica de las cargas en movimiento y la magnetostática de los polos magnéticos en reposo.
En la física moderna
Mientras que la física clásica se ocupa generalmente de la materia y la energía en la escala normal de observación, gran parte de la física moderna se ocupa del comportamiento de la materia y la energía en condiciones extremas o a una escala muy grande o muy pequeña. Por ejemplo, la atómica y la Física nuclear estudian la materia a la escala más pequeña en la que se pueden identificar los elementos químicos. La física de las partículas elementales se encuentra en una escala aún más pequeña, ya que se ocupa de las unidades más básicas de la materia; esta rama de la física también se conoce como física de alta energía debido a las energías extremadamente altas necesarias para producir muchos tipos de partículas en los aceleradores de partículas. A esta escala, las nociones ordinarias y comunes de espacio, tiempo, materia y energía ya no son válidas.[59]
Las dos principales teorías de la física moderna presentan una imagen diferente de los conceptos de espacio, tiempo y materia de la presentada por la física clásica. La mecánica clásica aproxima la naturaleza como continua, mientras que la teoría cuántica se ocupa de la naturaleza discreta de muchos fenómenos a nivel atómico y subatómico y de los aspectos complementarios de las partículas y las ondas en la descripción de dichos fenómenos. La teoría de la relatividad se ocupa de la descripción de los fenómenos que tienen lugar en un marco de referencia que está en movimiento con respecto a un observador; la teoría especial de la relatividad se ocupa del movimiento en ausencia de campos gravitatorios y la teoría general de la relatividad del movimiento y su conexión con la gravitación. Tanto la teoría cuántica como la teoría de la relatividad encuentran aplicaciones en todas o la mayoría de las áreas de la física moderna.[60]
Diferencia entre la física clásica y la moderna

Aunque la física pretende descubrir leyes universales, ante la falta de una teoría unificada, sus teorías se sitúan en dominios explícitos de aplicabilidad.

En términos generales, las leyes de la física clásica describen con precisión sistemas cuyas escalas de longitud importantes son mayores que la escala atómica y cuyos movimientos son mucho más lentos que la velocidad de la luz. Fuera de este ámbito, las observaciones no coinciden con las predicciones de la mecánica clásica. Einstein aportó el marco de la relatividad especial, que sustituyó las nociones de tiempo y espacio absolutos por las de espaciotiempo y permitió una descripción precisa de los sistemas cuyos componentes tienen velocidades cercanas a la de la luz. Grandes físicos contemporáneos de Albert Einstein, como Planck, Schrödinger y otros, introdujeron la mecánica cuántica, una noción probabilística de las partículas y las interacciones que permitió una descripción precisa de las escalas atómica y subatómica. Posteriormente, la teoría cuántica de campos unificó la mecánica cuántica y la relatividad especial. La relatividad general permitió un espaciotiempo dinámico y curvo, con el que se pueden describir bien los sistemas altamente masivos y la estructura a gran escala del universo. La relatividad general aún no se ha unificado con las otras descripciones fundamentales; se están desarrollando varias teorías candidatas de gravedad cuántica por el momento.
Ramas
Mecánica clásica
Electromagnetismo
Relatividad
Termodinámica
Error de Lua en Módulo:TNT en la línea 159: Missing JsonConfig extension; Cannot load https://commons.wikimedia.org/wiki/Data:I18n/Module:Excerpt.tab.
Mecánica cuántica
Conceptos físicos fundamentales
Áreas de investigación
Física teórica
Física de la materia condensada
Física molecular
Física atómica
Física nuclear
Física de partículas o de altas energías
Astrofísica
Error de Lua en Módulo:TNT en la línea 159: Missing JsonConfig extension; Cannot load https://commons.wikimedia.org/wiki/Data:I18n/Module:Excerpt.tab.
Biofísica
Resumen de las disciplinas físicas
Clasificación de la física con respecto a teorías:
- Mecánica clásica. Se puede considerar que aglutina y se compone por la mecánica clásica (3 leyes de Newton), fluidos y flotabilidad (Principio de Arquímedes y otras aportaciones más recientes), elasticidad (Ley de Hooke), termodinámica (aplicaciones y teoría de gases, de Lavoisier, Boltzmann y Gibbs entre otros), y electromagnetismo (ecuaciones de Maxwell). Principales contribuyentes destacados: en mecánica clásica y cosmología: Sir Isaac Newton y Henry Cavendish; en elasticidad, Robert Hooke y Thomas Young; en termodinámica, un gran número de contribuyentes destacaron, permitiendo la revolución industrial, tales como Lavoisier, Watt, Gibbs, Boltzmann, van der Waals, Sadi Carnot y James Joule; Maxwell, aparte de a la termodinámica, también contribuyó destacadamente en el desarrollo del electromagnetismo. Finalmente, en el apartado de fluidos y flotabilidad, destacan Arquímedes en la Antigüedad, y Daniel Bernoulli en épocas más recientes.
- Mecánica cuántica. Partiendo de las observaciones de Young (experimento de la doble-rendija),[61] Davisson y Germer (1927),[50] Planck (1901),[62] y el propio Einstein que en 1905 aportó uno de los experimentos, el efecto fotoeléctrico,[63] como piedra angular, Louis de Broglie propuso una idea radical para la física de la época, surgiendo la denominada física cuántica.[64] Aparte de los anteriores, son destacables las aportaciones de Heisenberg,[46] Schrödinger (que propuso un planteamiento paradójico a modo de crítica que serviría para representar uno de los efectos más destacados y representativos de la mecánica cuántica, actualmente conocido como el experimento del "Gato de Schrödinger", un experimento de tipo gedanken), y los grupos de Bell, Clauser, Horne, y Shimony; Aspect, Dalibard y Roger; y posteriormente Zeilinger (en 1986), por los experimentos que probaron el efecto anterior (y la mecánica cuántica)[65] especialmente Bell y sus trabajos, que propusieron y plantearon el experimento para probar o desechar la Teoría de la mecánica cuántica.[66][67][68]
- Teoría cuántica de campos. Consiste en la aplicación de los principios de la mecánica cuántica a los sistemas clásicos de campos continuos, por ejemplo, el intento llevado a cabo para hacer la mecánica cuántica compatible con la relatividad.[69][70] Destacan por sus contribuciones Dirac, Fock, Pauli, Tomonaga, Schwinger, Feynman y Dyson, entre otros.
- Teoría de la relatividad. Se trata de una teoría fundamental desarrollada por Albert Einstein entre 1905[71]y 1919[72][73](cuando se consideró probada gracias a las observaciones de Eddington),[47]basada en las observaciones de Einstein de que la velocidad de la luz en el vacío es igual en todos los sistemas de referencia inerciales y de obtener todas las consecuencias del principio de relatividad de Galileo.
- Relatividad especial. Publicada en 1905, se denomina especial porque no aplica en todos los casos, solo aquellos en los que la gravedad puede ignorarse. (Es decir, no incluye a la gravedad en sus predicciones).[63]
- Relatividad general. Desarrollada entre 1905 y 1919, debido a las críticas recibidas, se publicó por partes por su autor, Albert Einstein, publicándose los primeros en 1915,[74]y finalizando con los de 1918-1919 que finaliza en una nota de Einstein sobre la observación de Eddington que considera como confirmada las predicciones de la teoría de la relatividad y la teoría de la relatividad general.[75][76]
- Física estadística. La mecánica estadística o física estadística es una rama de la física que trata de resolver problemas de conjuntos y grandes poblaciones o elementos, a partir de la aplicación de las herramientas matemáticas y la teoría de probabilidad y la estadística. Surgió a partir de los planteamientos y observaciones de Boltzmann,[77] Gibbs[78]y Constantin Carathéodory,[79]y puede describir una amplia variedad de campos con una naturaleza inherentemente estocástica. Si hubiera que destacar un trabajo más reciente que pudiera dar lugar al surgimiento o definición de esta parte de la ciencia, aparte del de Gibbs, sería considerable el trabajo de Edward Lorenz de 1963.[80]
- Termodinámica. La termodinámica actual, contiene (aparte de la termodinámica clásica) una serie de subdivisiones o disciplinas, que la hacen considerarla una rama o disciplina separable o comprensible más allá de la puramente clásica. Estas son la dinámica de la atmósfera, termodinámica biológica, termodinámica de los agujeros negros, termodinámica química, termodinámica clásica, termodinámica del equilibrio, ecología industrial (re: Exergía), termodinámica de máxima entropía, termodinámica del no-equilibrio, filosofía de la física térmica y estadística, algunos principios aplicables a la psicometría, la termodinámica cuántica, la termodinámica estadística, y la termoeconomía.
- Mecánica de medios continuos.
- Electromagnetismo.
- Electrónica. Serían destacables los descubrimientos de Edison (efecto Edison) en 1883, Fleming, con la aplicación del anterior para desarrollar el diodo, Lee De Forest cuando en 1906 inventó el triodo, y permitió la amplificación de señales de radio y, en general, la tecnología de radio,[81] el transistor, de la mano de John Bardeen y Walter Brattain, de la Bell Telephone Company, en 1948,[82] y el primer circuito integrado de Jack S. Kilby (1958).[83] Otro destacado, si no el más importante precursor, es Joseph John Thomson, por su descubrimiento del electrón, en 1897.[84]
- Astrofísica (rama de la astronomía).
- Geofísica (rama de la geología).
- Biofísica (rama de la biología).
- Óptica. Algunos de los precursores en óptica, aparte de la lente de Nimrud, pueden ser considerados Al-hacén,[85][86] Snel (ley de Snell), el experimento de Young (1804) ya mencionado anteriormente, la interferometría propiciada por Michelson,[87][88] y el láser, puesto a funcionar por primera vez por Theodore Maiman en 1960.[89]
Historia
Astronomía antigua
La Astronomía es una de las más antiguas ciencias naturales. Las primeras civilizaciones que se remontan a antes del año 3000 a. C., como la de Sumeria, la del antiguo Egipto y la de la Civilización del Valle del Indo, tenían un conocimiento predictivo y una comprensión básica de los movimientos del Sol, la Luna y las estrellas.[90][91][92][93][94]
Las estrellas y los planetas, que se creía que representaban a los dioses, eran a menudo adorados. Aunque las explicaciones de las posiciones observadas de las estrellas eran a menudo poco científicas y carentes de pruebas, estas primeras observaciones sentaron las bases de la astronomía posterior, ya que se descubrió que las estrellas atravesaban grandes círculos en el cielo,[95] lo que, sin embargo, no explicaba las posiciones de los planetas.
Según Asger Aaboe, los orígenes de la astronomía occidental se encuentran en Mesopotamia, y todos los esfuerzos occidentales en las ciencias exactas descenderían de la astronomía babilónica.[96]Sin embargo, los astrónomos egipcios dejaron monumentos que muestran el conocimiento de las constelaciones y los movimientos de los cuerpos celestes, habiendo realizado un seguimiento, y existen anotaciones que se remontan a tiempos ancestrales, y que requerirían cálculos y conocimientos muy precisos,[92][93][97]mientras que el poeta griego Homero escribió sobre varios objetos celestes en su Ilíada y Odisea; y más tarde, los astrónomos griegos describieron, estudiaron y proporcionaron nombres, que todavía se utilizan hoy en día para la mayoría de las constelaciones visibles desde el hemisferio norte.[98]
Filosofía natural
La Filosofía natural tiene sus orígenes en Grecia durante el período arcaico (650 a. C. - 480 a. C.), cuando los filósofos presocráticos como Tales rechazaron las explicaciones de lo no naturalista para los fenómenos naturales y proclamaron que todo acontecimiento tenía una causa natural.[99] Propusieron ideas verificadas por la razón y la observación, y muchas de sus hipótesis tuvieron éxito al poder explicar las observaciones mediante cálculo y la experimentación.[100] Por ejemplo, el atomismo fue encontrado como correcto aproximadamente 2000 años después de ser propuesto por Leucipo y su alumno Demócrito.[101][102][103]
Física medieval e islámica

El Imperio romano de Occidente cayó en el siglo V, lo que provocó un declive de las actividades intelectuales en la parte occidental de Europa. En cambio, el Imperio romano de Oriente (también conocido como Imperio bizantino) resistió los ataques de los bárbaros, y continuó avanzando en diversos campos del saber, entre ellos la física.[104]
En el siglo VI, Isidoro de Mileto realizó una importante recopilación de las obras de Arquímedes que están copiadas en el Palimpsesto de Arquímedes.
En la Europa del siglo VI, Juan Filopón (Philoponus), un erudito bizantino, cuestionó la enseñanza de la física de Aristóteles y señaló sus defectos. Introdujo la teoría del ímpetu. La física de Aristóteles no fue examinada hasta que apareció Philoponus. A diferencia de Aristóteles, que basaba su física en la argumentación verbal, Philoponus se basó en la observación. Sobre la física de Aristóteles, Philoponus escribió:
"Pero esto es completamente erróneo, y nuestro punto de vista puede ser corroborado por la observación real más eficazmente que por cualquier tipo de argumento verbal. Pues si dejas caer desde la misma altura dos pesos de los cuales uno es muchas veces más pesado que el otro, verás que la relación de los tiempos requeridos para el movimiento no depende de la relación de los pesos, sino que la diferencia de tiempo es muy pequeña. Y así, si la diferencia de pesos no es considerable, es decir, si uno es, digamos, el doble que el otro, no habrá diferencia, o bien una diferencia imperceptible, en el tiempo, aunque la diferencia de peso no es en absoluto despreciable, con un cuerpo que pesa el doble que el otro."[105]
La crítica de Philoponus a los principios aristotélicos de la física serviría de inspiración a Galileo Galilei diez siglos después,[106] durante la Revolución Científica. Galileo citó sustancialmente a Philoponus en sus obras al argumentar que la física aristotélica era defectuosa.[104][107] En el año 1300 Jean Buridan, profesor de la facultad de artes de la Universidad de París, desarrolló el concepto de ímpetu. Fue un paso hacia las ideas modernas de inercia e impulso.[108]
La erudición islámica heredó la física aristotélica de los griegos y durante la Edad de Oro islámica la desarrolló aún más, poniendo especialmente énfasis en la observación y el razonamiento a priori, desarrollando las primeras formas del método científico.

Las innovaciones más notables se produjeron en el campo de la óptica y la visión, que procedieron de los trabajos de muchos científicos como Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi y Avicena. La obra más notable fue El Libro de la Óptica (también conocido como Kitāb al-Manāẓir), escrito por Ibn al-Haytham, en el que refutaba de forma concluyente la antigua idea griega sobre la visión, pero también aportaba una nueva teoría. En El Libro de la Óptica, presentó un estudio del fenómeno de la cámara oscura (su versión milenaria de la cámara estenopeica) y profundizó en el funcionamiento del propio ojo. Utilizando disecciones y los conocimientos de estudiosos anteriores, pudo empezar a explicar cómo entra la luz en el ojo. Afirmó que el rayo de luz se enfoca, pero la explicación real de cómo la luz se proyecta a la parte posterior del ojo, aunque este hito en sus planteamientos tuvo que esperar hasta 1604. En su Tratado sobre la luz explicó la cámara oscura, cientos de años antes del desarrollo moderno de la fotografía.[110]
El Libro de la Óptica (Kitab al-Manathir), de siete volúmenes, influyó enormemente en el pensamiento de distintas disciplinas, desde la teoría de la percepción visual hasta la naturaleza de la perspectiva en el arte medieval, tanto en Oriente como en Occidente, durante más de 600 años. Muchos estudiosos europeos posteriores y compañeros polímatas, desde Robert Grosseteste y Leonardo da Vinci hasta René Descartes, Johannes Kepler e Isaac Newton, estaban en deuda con él. De hecho, la influencia de la óptica de Ibn al-Haytham se equipara a la de la obra de Newton del mismo título, publicada 700 años después.
La traducción de El Libro de la Óptica tuvo un gran impacto en Europa. A partir de ella, los eruditos europeos posteriores pudieron construir dispositivos que replicaban los que Ibn al-Haytham había construido, y comprender el funcionamiento de la luz. A partir de ello, se desarrollaron cosas tan importantes como gafas, lupas, telescopios y cámaras.
Física clásica

La física se convirtió en una ciencia independiente cuando la Europa moderna temprana utilizó métodos experimentales y cuantitativos para descubrir lo que ahora se consideran las leyes de la física.[111]Plantilla:Page needed
Entre los principales avances de este periodo se encuentran la sustitución del modelo geocéntrico del Sistema Solar por el modelo copernicano heliocéntrico, las leyes que rigen el movimiento de los cuerpos planetarios determinadas por Kepler entre 1609 y 1619, los trabajos pioneros sobre telescopios y astronomía observacional de Galileo en los siglos XVI y XVII, y el descubrimiento y la unificación por parte de Newton de las leyes del movimiento y de la ley de la gravitación universal de Newton, que llegarían a llevar su nombre.[112]Newton también desarrolló el cálculo,[113] el estudio matemático del cambio, que proporcionó nuevos métodos matemáticos para resolver problemas físicos.[114]
El descubrimiento de nuevas leyes en termodinámica, química y electromagnética fue el resultado de un mayor esfuerzo de investigación durante la Revolución Industrial al aumentar las necesidades energéticas.[115] Las leyes que componen la física clásica siguen siendo muy utilizadas para objetos a escalas cotidianas que se desplazan a velocidades no relativistas, ya que proporcionan una aproximación muy cercana en tales situaciones, y teorías como la mecánica cuántica y la teoría de la relatividad se simplifican a sus equivalentes clásicos a tales escalas. Sin embargo, las imprecisiones de la mecánica clásica para objetos muy pequeños y velocidades muy altas condujeron al desarrollo de la física moderna en el siglo XX.
Física moderna
La física clásica se ocupa generalmente de la materia y la energía en la escala normal de observación, mientras que gran parte de la física moderna se ocupa del comportamiento de la materia y la energía en condiciones extremas o a una escala muy grande o muy pequeña. Por ejemplo, la atómica y la Física nuclear estudian la materia a la escala más pequeña en la que se pueden identificar los elementos químicos. La física de las partículas elementales encuentra su campo de estudio a una escala aún más pequeña, ya que se ocupa de las unidades más básicas de la materia; esta rama de la física también se conoce como física de alta energía, debido a las energías extremadamente altas necesarias para producir muchos tipos de partículas en los aceleradores de partículas. A esta escala, las nociones ordinarias y comunes de espacio, tiempo, materia y energía ya no son válidas.[59]
Las dos principales teorías de la física moderna presentan una imagen diferente de los conceptos de espacio, tiempo y materia de la presentada por la física clásica. Mientras la mecánica clásica aproxima la naturaleza como continua, la teoría cuántica se ocupa de la naturaleza discreta de muchos fenómenos a nivel atómico y subatómico y de los aspectos complementarios de las partículas y las ondas en la descripción de dichos fenómenos. La teoría de la relatividad se ocupa de la descripción de los fenómenos que tienen lugar en un marco de referencia que está en movimiento con respecto a un observador: la teoría especial de la relatividad, por un lado, se ocupa del movimiento en ausencia de campos gravitatorios y la teoría general de la relatividad, por otra parte (más amplia y general), del movimiento y su conexión con la gravitación. Tanto la teoría cuántica como la teoría de la relatividad encuentran sus aplicaciones en prácticamente todas las áreas de la física moderna.[60]
Filosofía
Principales magnitudes físicas
Las unidades indicadas para cada magnitud son las utilizadas en el Sistema Internacional de Unidades. Las unidades en negrita son básicas, las restantes surgen de otras (son derivadas).
- Geométricas
- Longitud: cuya unidad es el metro (m)
- Área: cuya unidad es el metro cuadrado (m2)
- Volumen: cuya unidad es el metro cúbico (m3)
- Relacionadas con el tiempo y proporciones respecto al tiempo:
- Tiempo: cuya unidad es el segundo (s)
- Velocidad: cuya unidad es el metro por segundo (m/s)
- Aceleración: cuya unidad es el metro por segundo al cuadrado (m/s2)
- Frecuencia: cuya unidad es el hercio o hertz.
- Relacionadas con la dinámica:
- Termodinámicas y relacionadas con la cantidad de materia:
- Masa: cuya unidad es el kilogramo (kg)
- Cantidad de sustancia: cuya unidad es el mol
- Temperatura: cuya unidad es el kelvin (K)
- Presión: cuya unidad es el pascal (Pa)
Véase también
Portal:Física. Contenido relacionado con Física.- Geofísica
- Geología
- Ganadores del Premio Nobel de Física
- Movimiento (física)
- Comparación de la química y la física
Referencias
- ↑ Manzanelli, Lara (2008). Fundamentos de Física, Volumen 2 6a.ed. Cengage Learning. ISBN 978-970-686-863-3.
- ↑ Serway, Raymond A. (2008). Fundamentos de Física, Volumen 2 6a.ed. Cengage Learning. ISBN 978-970-686-863-3.
- ↑ «Definición de físico, ca». Diccionario de la lengua española. RAE. Consultado el 14 de noviembre de 2018.
- ↑ Manzanelli, Lara (2010). «Medidas y vectores». En W. H. FREEMAN AND COMPANY, New York and Basingstoke, ed. Física para la ciencia y la tecnología. 08029 Barcelona. ESPAÑA: Reverté. p. p.1. ISBN 978-84-291-4421-5.
- ↑ Jackson, Tom (2016). Física. Una historia ilustrada de los fundamentos de la ciencia. Librero. p. 8-9. ISBN 978-90-8998-656-6.
- ↑ Tipler Paul A. (1995). Física. España- Barcelona: Editorial Reverté, S. A.
- ↑ Serway Raimond, Faunghn Jerry (2005). Física - Sexta Edición. Thompson. ISBN 970-686-377-X.
- ↑ Serway R. A y Jewett J. W. Jr (2009). Física para ciencias e ingeniería con Física Moderna. México D. F: Cengage Learning, Inc.
- ↑ Faus, Jesús Navarro (2015). La superfluidez, Landau: la física que surgió del frío. RBA Coleccionables. ISBN 978-84-473-7780-0. Consultado el 7 de diciembre de 2023.
- ↑ Whitrow, G. J. (1 de enero de 1990). Einstein, el hombre y su obra. Siglo XXI. ISBN 978-968-23-1625-8. Consultado el 7 de diciembre de 2023.
- ↑ Platón (1999). Timeo. Ediciones Colihue SRL. ISBN 978-950-581-726-9. Consultado el 7 de diciembre de 2023.
- ↑ Internet Archive, Ronald (1999). A contextual history of mathematics : to Euler. Upper Saddle River, NJ : Prentice Hall. ISBN 978-0-02-318285-3. Consultado el 7 de diciembre de 2023.
- ↑ University of Michigan (2004). The works of Archimedes : translated into English, together with Eutocius' commentaries, with commentary, and critical edition of the diagrams. Vol. 1, The two books 'On the sphere and the cylinder'. Cambridge : Cambridge University Press. ISBN 978-0-511-19565-5. Consultado el 7 de diciembre de 2023.
- ↑ 14,0 14,1 14,2 14,3 «Revolución Científica: historia, características y consecuencias». https://humanidades.com/. Consultado el 7 de diciembre de 2023.
- ↑ 15,0 15,1 Elena, Alberto (1989). A hombros de gigantes: estudios sobre la primera revolución científica. Alianza Editorial. ISBN 978-84-206-2586-7. Consultado el 7 de diciembre de 2023.
- ↑ 16,0 16,1 «The Nobel Prize in Chemistry 2023». NobelPrize.org (en en-US). Consultado el 7 de diciembre de 2023.
- ↑ 17,0 17,1 «The Nobel Prize in Physics 2023». NobelPrize.org (en en-US). Consultado el 7 de diciembre de 2023.
- ↑ Pullman, ALBERTE; Pullman, BERNARD (1 de enero de 1967). Florkin, MARCEL, ed. Chapter I - Quantum Biochemistry. Bioenergetics 22. Elsevier. pp. 1-60. doi:10.1016/b978-1-4831-9712-8.50009-6. Consultado el 7 de diciembre de 2023.
- ↑ Atkins, Peter; Paula, Julio de; Friedman, Ronald (2009). Quanta, Matter, and Change: A Molecular Approach to Physical Chemistry (en English). OUP Oxford. ISBN 978-0-19-920606-3. Consultado el 7 de diciembre de 2023.
- ↑ Cat, Jordi (2023). Zalta, Edward N., ed. The Unity of Science (Spring 2023 edición). Metaphysics Research Lab, Stanford University. Consultado el 7 de diciembre de 2023.
- ↑ BUNGE, Mario (31 de octubre de 1973). The Methodological Unity of Science (en English). Springer Science & Business Media. ISBN 978-90-277-0354-5. Consultado el 7 de diciembre de 2023.
- ↑ «Neither Physics nor Chemistry». MIT Press (en en-US). Consultado el 7 de diciembre de 2023.
- ↑ Oppenheim, Paul (1958). «Unity of Science as a Working Hypothesis». philpapers.org (en English). Consultado el 7 de diciembre de 2023.
- ↑ Hecht, Eugene (1980). Física en Perspectiva. Addison - Wesley Iberoamericana. ISBN 0-201-64015-5.
- ↑ Einstein, Albert (1 de marzo de 1936). «Physics and reality». Journal of the Franklin Institute 221 (3): 349-382. ISSN 0016-0032. doi:10.1016/S0016-0032(36)91047-5. Consultado el 7 de diciembre de 2023.
- ↑ Kranzberg, Melvin (1967). «The Unity of Science—Technology». American Scientist 55 (1): 48-66. ISSN 0003-0996. Consultado el 7 de diciembre de 2023.
- ↑ Midgley, Gerald (2001-01). «RETHINKING THE UNITY OF SCIENCE». International Journal of General Systems (en English) 30 (3): 379-409. ISSN 0308-1079. doi:10.1080/03081070108960713. Consultado el 7 de diciembre de 2023.
- ↑ Young Hugh D. y Freedman Roger A. (2009). Física universitaria con Física moderna. México: Pearson Educación, S.A. ISBN 978-607-442-304-4.
- ↑ Bechtel, William; Hamilton, Andrew (1 de enero de 2007). Kuipers, Theo A. F., ed. - Reduction, Integration, and the Unity of Science: Natural, Behavioral, and Social Sciences and the Humanities. Handbook of the Philosophy of Science. North-Holland. pp. 377-430. doi:10.1016/b978-044451548-3/50009-4. Consultado el 8 de diciembre de 2023.
- ↑ Kojevnikov, Alexei (30 de junio de 2011). «A grande ciência de Stalin: tempos e aventuras de físicos soviéticos no exemplo da biografia política de Lev Landau». Revista Brasileira de História da Ciência (en português) 4 (1): 6-15. ISSN 2176-3275. doi:10.53727/rbhc.v4i1.310. Consultado el 8 de diciembre de 2023.
- ↑ 31,0 31,1 31,2 Muñoz, Julio Gutiérrez (15 de octubre de 2007). «La Física, Ciencia teórica y experimental». Vivat Academia: 24-41. ISSN 1575-2844. doi:10.15178/va.2007.89.24-41. Consultado el 23 de diciembre de 2023.
- ↑ Vemulapalli, G. Krishna; Byerly, Henry (1 de marzo de 1999). «Remnants of Reductionism». Foundations of Chemistry (en English) 1 (1): 17-41. ISSN 1572-8463. doi:10.1023/A:1009984310105. Consultado el 23 de diciembre de 2023.
- ↑ 33,0 33,1 Mainzer, Klaus (1998). «“Computational and Mathematical Models in Chemistry: Epistemic Foundations and New Perspectives of Research"». Janich, P. y Psarros, N. (Eds.). The Autonomy of Chemistry: 3rd Erlenmeyer-Colloquy for the Philosophy of Chemistry (Würzburg: Königshausen & Neumann): 33-50. ISBN 9783826014864. Resumen divulgativo.
- ↑ Spira, M.; Djouadi, A.; Graudenz, D.; Zerwas, R. M. (23 de octubre de 1995). «Higgs boson production at the LHC». Nuclear Physics B 453 (1): 17-82. ISSN 0550-3213. doi:10.1016/0550-3213(95)00379-7. Consultado el 23 de diciembre de 2023.
- ↑ Measday, D. F. (1 de noviembre de 2001). «The nuclear physics of muon capture». Physics Reports 354 (4): 243-409. ISSN 0370-1573. doi:10.1016/S0370-1573(01)00012-6. Consultado el 23 de diciembre de 2023.
- ↑ Lada, Charles J.; Lada, Elizabeth A. (2003-09). «Embedded Clusters in Molecular Clouds». Annual Review of Astronomy and Astrophysics (en English) 41 (1): 57-115. ISSN 0066-4146. doi:10.1146/annurev.astro.41.011802.094844. Consultado el 23 de diciembre de 2023.
- ↑ Keto, Eric; Ho, Luis C.; Lo, K.-Y. (20 de diciembre de 2005). «M82, Starbursts, Star Clusters, and the Formation of Globular Clusters». The Astrophysical Journal (en English) 635 (2): 1062. ISSN 0004-637X. doi:10.1086/497575. Consultado el 23 de diciembre de 2023.
- ↑ «Exploring the Birth of Stars - NASA Science». science.nasa.gov (en English). Consultado el 23 de diciembre de 2023.
- ↑ Copi, Craig J.; Schramm, David N.; Turner, Michael S. (13 de enero de 1995). «Big-Bang Nucleosynthesis and the Baryon Density of the Universe». Science (en English) 267 (5195): 192-199. ISSN 0036-8075. doi:10.1126/science.7809624. Consultado el 23 de diciembre de 2023.
- ↑ G.E.A., Matsas, (1 de marzo de 1988). Study of primitive universe in the Bianchi IX model (en portuguese). Consultado el 23 de diciembre de 2023.
- ↑ Croswell, Ken (3 de mayo de 2022). «Nearby primitive galaxies offer a window into the early universe». Proceedings of the National Academy of Sciences (en English) 119 (18). ISSN 0027-8424. PMC 9171379. PMID 35482918. doi:10.1073/pnas.2204371119. Consultado el 23 de diciembre de 2023.
- ↑ «Volume 8: The Berlin Years: Correspondence, 1914-1918 (English translation supplement)». einsteinpapers.press.princeton.edu. Consultado el 23 de diciembre de 2023.
- ↑ Bohr, N. (15 de octubre de 1935). «Can Quantum-Mechanical Description of Physical Reality be Considered Complete?». Physical Review 48 (8): 696-702. doi:10.1103/PhysRev.48.696. Consultado el 23 de diciembre de 2023.
- ↑ Schrödinger, E. (1 de diciembre de 1935). «Die gegenwärtige Situation in der Quantenmechanik». Naturwissenschaften (en Deutsch) 23 (49): 823-828. ISSN 1432-1904. doi:10.1007/BF01491914. Consultado el 23 de diciembre de 2023.
- ↑ Einstein, A.; Podolsky, B.; Rosen, N. (15 de mayo de 1935). «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?». Physical Review 47 (10): 777-780. doi:10.1103/PhysRev.47.777. Consultado el 23 de diciembre de 2023.
- ↑ 46,0 46,1 Heisenberg, W. (1 de marzo de 1927). «Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik». Zeitschrift für Physik (en Deutsch) 43 (3): 172-198. ISSN 0044-3328. doi:10.1007/BF01397280. Consultado el 23 de diciembre de 2023.
- ↑ 47,0 47,1 «IX. A determination of the deflection of light by the sun's gravitational field, from observations made at the total eclipse of May 29, 1919». Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (en English) 220 (571-581): 291-333. 1920-01. ISSN 0264-3952. doi:10.1098/rsta.1920.0009. Consultado el 23 de diciembre de 2023.
- ↑ Hubble, Edwin (15 de marzo de 1929). «A relation between distance and radial velocity among extra-galactic nebulae». Proceedings of the National Academy of Sciences (en English) 15 (3): 168-173. ISSN 0027-8424. PMC 522427. PMID 16577160. doi:10.1073/pnas.15.3.168. Consultado el 23 de diciembre de 2023.
- ↑ Lemaître, G. (1927). Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques // AA(Université catholique de Louvain) ; Publication: Annales de la Société Scientifique de Bruxelles, A47, p. 49-59 ; Publication Date: 00/1927 ; Origin: AUTHOR ; Keywords: cosmology, big-bang theory ; Bibliographic Code: 1927ASSB...47...49L. Consultado el 23 de diciembre de 2023.
- ↑ 50,0 50,1 Davisson, C.; Germer, L. H. (1927-04). «The Scattering of Electrons by a Single Crystal of Nickel». Nature (en English) 119 (2998): 558-560. ISSN 1476-4687. doi:10.1038/119558a0. Consultado el 23 de diciembre de 2023.
- ↑ «Webb Image Release- Webb Space Telescope GSFC/NASA». webb.nasa.gov (en English). Consultado el 25 de diciembre de 2023.
- ↑ Courant, Richard; Hilbert, David (2009). Methods of mathematical physics. Vol.1
|url=incorrecta con autorreferencia (ayuda) 1. Wiley-VCH. ISBN 978-0-471-50447-4. Consultado el 23 de diciembre de 2023. - ↑ Methoden der mathematischen Physik. Consultado el 23 de diciembre de 2023.
- ↑ 54,0 54,1 Hilbert, D.; Neumann, J. v.; Nordheim, L. (1 de marzo de 1928). «Über die Grundlagen der Quantenmechanik». Mathematische Annalen (en Deutsch) 98 (1): 1-30. ISSN 1432-1807. doi:10.1007/BF01451579. Consultado el 23 de diciembre de 2023.
- ↑ Young y Freedman, 2014, p. 2 "La física es una ciencia experimental. Los físicos observan los fenómenos de la naturaleza y tratan de encontrar patrones que relacionen estos fenómenos."
- ↑ «acoustics». Encyclopædia Britannica. Archivado desde el original el 18 de junio de 2013. Consultado el 14 de junio de 2013.
- ↑ «Bioacústica - la Revista Internacional del Sonido Animal y su Grabación». Taylor & Francis. Archivado desde info/ el original el 5 de septiembre de 2012. Consultado el 31 de julio de 2012.
- ↑ Acoustical Society of America (ed.). «La acústica y usted (¿Una carrera en acústica?)». Archivado desde el original el 4 de septiembre de 2015. Consultado el 21 de mayo de 2013.
- ↑ 59,0 59,1 Tipler y Llewellyn, 2003, pp. 269, 477, 561
- ↑ 60,0 60,1 Tipler y Llewellyn, 2003, pp. 1-4, 115, 185-187
- ↑ «I. The Bakerian Lecture. Experiments and calculations relative to physical optics». Philosophical Transactions of the Royal Society of London (en English) 94: 1-16. 31 de diciembre de 1804. ISSN 0261-0523. doi:10.1098/rstl.1804.0001. Consultado el 25 de diciembre de 2023.
- ↑ Planck, Max (1901-01). «Ueber das Gesetz der Energieverteilung im Normalspectrum». Annalen der Physik (en English) 309 (3): 553-563. ISSN 0003-3804. doi:10.1002/andp.19013090310. Consultado el 25 de diciembre de 2023.
- ↑ 63,0 63,1 Einstein, A. (1905-01). «Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt». Annalen der Physik (en English) 322 (6): 132-148. ISSN 0003-3804. doi:10.1002/andp.19053220607. Consultado el 25 de diciembre de 2023.
- ↑ De Broglie, Louis (1923-10). «Waves and Quanta». Nature (en English) 112 (2815): 540-540. ISSN 1476-4687. doi:10.1038/112540a0. Consultado el 25 de diciembre de 2023.
- ↑ Schirber, Michael (4 de octubre de 2022). «Nobel Prize: Quantum Entanglement Unveiled». Physics (en English) 15: 153. doi:10.1103/PhysRevLett.49.1804. Consultado el 25 de diciembre de 2023.
- ↑ Bell, J. S. (1 de noviembre de 1964). «On the Einstein Podolsky Rosen paradox». Physics Physique Fizika 1 (3): 195-200. doi:10.1103/PhysicsPhysiqueFizika.1.195. Consultado el 25 de diciembre de 2023.
- ↑ Bell, John Stewart (1985). «The theory of local beables». Dialectica 39: 86-96. Consultado el 25 de diciembre de 2023.
- ↑ Bell, J. S. (1 de marzo de 1981). «BERTLMANN'S SOCKS AND THE NATURE OF REALITY». Le Journal de Physique Colloques (en English) 42 (C2): C2-62. ISSN 0449-1947. doi:10.1051/jphyscol:1981202. Consultado el 25 de diciembre de 2023.
- ↑ Wheeler, John Archibald; Feynman, Richard Phillips (1 de julio de 1949). «Classical Electrodynamics in Terms of Direct Interparticle Action». Reviews of Modern Physics 21 (3): 425-433. doi:10.1103/RevModPhys.21.425. Consultado el 25 de diciembre de 2023.
- ↑ Dyson, F. J. (1 de febrero de 1949). «The Radiation Theories of Tomonaga, Schwinger, and Feynman». Physical Review 75 (3): 486-502. doi:10.1103/PhysRev.75.486. Consultado el 25 de diciembre de 2023.
- ↑ Einstein, A. (1905-01). «Zur Elektrodynamik bewegter Körper». Annalen der Physik (en English) 322 (10): 891-921. ISSN 0003-3804. doi:10.1002/andp.19053221004. Consultado el 25 de diciembre de 2023.
- ↑ Einstein, A. (1918-01). «Prinzipielles zur allgemeinen Relativitätstheorie». Annalen der Physik (en English) 360 (4): 241-244. ISSN 0003-3804. doi:10.1002/andp.19183600402. Consultado el 25 de diciembre de 2023.
- ↑ Einstein, A. (16 de diciembre de 2005). Simon, Dieter, ed. Über Gravitationswellen (en Deutsch) (1 edición). Wiley. pp. 135-149. ISBN 978-3-527-40609-8. doi:10.1002/3527608958.ch12. Consultado el 25 de diciembre de 2023.
- ↑ Einstein, A. (16 de diciembre de 2005). Simon, Dieter, ed. Zur allgemeinen Relativitätstheorie (en Deutsch) (1 edición). Wiley. pp. 214-221. ISBN 978-3-527-40609-8. doi:10.1002/3527608958.ch23. Consultado el 25 de diciembre de 2023.
- ↑ Einstein, Albert (1931). Cosmic Religion: With Other Opinions and Aphorisms (en English). Covici-Friede. ISBN 978-0-598-49595-2. Consultado el 25 de diciembre de 2023.
- ↑ «Cosmic Times». imagine.gsfc.nasa.gov. Consultado el 25 de diciembre de 2023.
- ↑ Boltzmann, Ludwig (1885-01). «Ueber die Möglichkeit der Begründung einer kinetischen Gastheorie auf anziehende Kräfte allein». Annalen der Physik (en English) 260 (1): 37-44. ISSN 0003-3804. doi:10.1002/andp.18852600104. Consultado el 25 de diciembre de 2023.
- ↑ «Elementary principles in statistical mechanics, developed with especial reference to the rational foundations of thermodynamics, by J. Willard Gibbs ...». HathiTrust (en English). Consultado el 25 de diciembre de 2023.
- ↑ Carathéodory, C. (1 de septiembre de 1909). «Untersuchungen über die Grundlagen der Thermodynamik». Mathematische Annalen (en Deutsch) 67 (3): 355-386. ISSN 1432-1807. doi:10.1007/BF01450409. Consultado el 25 de diciembre de 2023.
- ↑ Lorenz, Edward N. (1 de marzo de 1963). «Deterministic Nonperiodic Flow». Journal of the Atmospheric Sciences (en English) 20 (2): 130-141. ISSN 0022-4928. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Consultado el 25 de diciembre de 2023.
- ↑ Carlos, J.; Floriani, A.; Introducción, I. (2006). Sobre la Historia de la Electrónica en el Primer Centenario de su Nacimiento: La Era Termoiónica. Consultado el 25 de diciembre de 2023.
- ↑ «IEEE-USA Today's Engineer». web.archive.org. 2 de marzo de 2016. Archivado desde el original el 2 de marzo de 2016. Consultado el 25 de diciembre de 2023.
- ↑ «The Nobel Prize in Physics 2000». NobelPrize.org (en en-US). Consultado el 25 de diciembre de 2023.
- ↑ «Descubrimiento del electrón - Principia». principia.io. Consultado el 24 de diciembre de 2023.
- ↑ National Central Library of Rome (1572). Opticae thesaurus. Alhazeni Arabis libri septem, nunc primùm editi. Eiusdem liber De crepusculis & nubium ascensionibus. Item Vitellonis Thuringolopoli libri 10. Omnes instaurati, figuris illustrati & aucti, adiecti etiam in Alhazenum commentarijs, a Federico Risnero (en latin). per Episcopius. Consultado el 25 de diciembre de 2023.
- ↑ Ptolemy; Smith, A. Mark (1996). Ptolemy's Theory of Visual Perception: An English Translation of the Optics (en English). American Philosophical Society. ISBN 978-0-87169-862-9. Consultado el 25 de diciembre de 2023.
- ↑ Michelson, Albert Abraham (1892). On the Application of Interference Methods to Spectroscopic Measurements: With Five Plates (en English). Smithsonian Institution. Consultado el 25 de diciembre de 2023.
- ↑ «The Nobel Prize in Physics 1907». NobelPrize.org (en en-US). Consultado el 25 de diciembre de 2023.
- ↑ Maiman, T. H. (1960-08). «Stimulated Optical Radiation in Ruby». Nature (en English) 187 (4736): 493-494. ISSN 1476-4687. doi:10.1038/187493a0. Consultado el 25 de diciembre de 2023.
- ↑ Astronomy (en English). PediaPress. Consultado el 26 de diciembre de 2023.
- ↑ Ruggles, Clive L. N. (2005). Ancient astronomy: an encyclopedia of cosmologies and myth
|url=incorrecta con autorreferencia (ayuda). ABC-CLIO. ISBN 978-1-85109-477-6. Consultado el 26 de diciembre de 2023. - ↑ 92,0 92,1 «Wayback Machine». web.archive.org. 15 de junio de 2013. Archivado desde el original el 15 de junio de 2013. Consultado el 26 de diciembre de 2023.
- ↑ 93,0 93,1 Clagett, Marshall (1995). Ancient Egyptian science. 2: Calendars, clocks, and astronomy
|url=incorrecta con autorreferencia (ayuda). Memoirs of the American Philosophical Society. American Philos. Soc. ISBN 978-0-87169-214-6. Consultado el 26 de diciembre de 2023. - ↑ Ashfaque, Syed Mohammad (1977-06). «Astronomy in the Indus Valley Civilization: A Survey of the Problems and Possibilities of the Ancient Indian Astronomy and Cosmology in the Light of Indus Script Decipherment by the Finnish Scholars». Centaurus (en English) 21 (2): 149-193. ISSN 0008-8994. doi:10.1111/j.1600-0498.1977.tb00351.x. Consultado el 26 de diciembre de 2023.
- ↑ Krupp, 2003
- ↑ Aaboe, 1991
- ↑ Clagett, 1995
- ↑ Thurston, 1994
- ↑ Singer, 2008, p. 35
- ↑ Lloyd, 1970, pp. 108-109
- ↑ Leucippus; Democritus; Taylor, C. C. W. (1 de enero de 2010). The Atomists, Leucippus and Democritus: Fragments : a Text and Translation with a Commentary (en English). University of Toronto Press. ISBN 978-1-4426-1212-9. Consultado el 26 de diciembre de 2023.
- ↑ Alonso, Pablo Molina (4 de abril de 2017). «Una revisión del pensamiento Cirenaico. Rasgos generales del hedonismo antiguo». Anales del Seminario de Historia de la Filosofía 34 (1): 247-254. ISSN 1988-2564. doi:10.5209/ASHF.55661. Consultado el 26 de diciembre de 2023.
- ↑ Pullman, Bernard (2001). The Atom in the History of Human Thought (en English). Oxford University Press. ISBN 978-0-19-515040-7. Consultado el 26 de diciembre de 2023.
- ↑ 104,0 104,1 Lindberg, 1992.
- ↑ archive.org/web/20160111105753/http://homepages.wmich.edu/~mcgrew/philfall. htm «John Philoponus, Commentary on Aristotle's Physics». Archivado desde wmich.edu/~mcgrew/philfall.htm el original el 11 de enero de 2016. Consultado el 15 de abril de 2018.
- ↑ Galileo (1638). Dos nuevas ciencias. «para comprender mejor hasta qué punto es concluyente la demostración de Aristóteles, podemos, en mi opinión, negar sus dos supuestos. Y en cuanto a la primera, dudo mucho que Aristóteles haya comprobado alguna vez mediante un experimento si es cierto que dos piedras, una de las cuales pesa diez veces más que la otra, si se las deja caer, en el mismo instante, desde una altura de, digamos, 100 codos, diferirían tanto en velocidad que cuando la más pesada hubiera llegado al suelo, la otra no habría caído más de 10 codos.
Simp. - Su lenguaje parece indicar que había probado el experimento, porque dice: Vemos el más pesado; ahora la palabra ver muestra que había hecho el experimento.
Sagr. - Pero yo, Simplicio, que he hecho la prueba, puedo asegurar[107] que una bala de cañón que pesa una o doscientas libras, o incluso más, no llegará al suelo ni siquiera un palmo por delante de una bala de mosquete que sólo pesa media libra, siempre que ambas se dejen caer desde una altura de 200 codos.» - ↑ edu/entries/philoponus/ «John Philoponus». The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018.
- ↑ «John Buridan». The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018.
- ↑ Smith, 2001, Libro I [6.85], [6.86], p. 379; Libro II, [3.80], p. 453.
- ↑ Howard y Rogers, 1995, pp. 6-7
- ↑ Ben-Chaim, 2004
- ↑ Guicciardini, 1999
- ↑ El cálculo fue desarrollado de forma independiente más o menos al mismo tiempo por Gottfried Wilhelm Leibniz; mientras que Leibniz fue el primero en publicar su trabajo y en desarrollar gran parte de la notación utilizada para el cálculo en la actualidad, Newton fue el primero en desarrollar el cálculo y aplicarlo a los problemas físicos. Véase también controversia sobre el cálculo de Leibniz-Newton
- ↑ Allen, 1997
- ↑ «La revolución industrial». Schoolscience.org, Instituto de Física. Archivado desde el original el 7 de abril de 2014. Consultado el 1 de abril de 2014.
Bibliografía
- Clagett, M. (1995). Ancient Egyptian Science. Volume 2. Philadelphia: American Philosophical Society.
- Dijksterhuis, E.J. (1986). The mechanization of the world picture: Pythagoras to Newton. Princeton, New Jersey: Princeton University Press. ISBN 978-0-691-08403-9. Archivado desde el original el 5 de agosto de 2011.
- Feynman, R.P.; Leighton, R.B.; Sands, M. (1963). The Feynman Lectures on Physics 1. ISBN 978-0-201-02116-5.
- Feynman, R.P. (1965). The Character of Physical Law. ISBN 978-0-262-56003-0.
- Godfrey-Smith, P. (2003). Theory and Reality: An Introduction to the Philosophy of Science. ISBN 978-0-226-30063-4.
- Goldstein, S. (1969). «Fluid Mechanics in the First Half of this Century». Annual Review of Fluid Mechanics 1 (1): 1-28. Bibcode:1969AnRFM...1....1G. doi:10.1146/annurev.fl.01.010169.000245.
- Hawking, S.; Penrose, R. (1996). The Nature of Space and Time. ISBN 978-0-691-05084-3.
- Krupp, E.C. (2003). Echoes of the Ancient Skies: The Astronomy of Lost Civilizations (en English). Dover Publications. ISBN 978-0-486-42882-6.
- Laplace, P.S. (1951). A Philosophical Essay on Probabilities. Translated from the 6th French edition by Truscott, F.W. and Emory, F.L. New York: Dover Publications.
- Lindberg, David (1992). The Beginnings of Western Science. University of Chicago Press.
- Lloyd, G.E.R. (1970). Early Greek Science: Thales to Aristotle. London; New York: Chatto and Windus; W. W. Norton & Company. ISBN 978-0-393-00583-7.
- Mastin, Luke (2010). «Greek Mathematics - Plato». The Story of Mathematics. Consultado el 29 de agosto de 2017.
- Mattis, D.C. (2006). The Theory of Magnetism Made Simple. World Scientific. ISBN 978-981-238-579-6.
- Maxwell, J.C. (1878). Matter and Motion. D. Van Nostrand. ISBN 978-0-486-66895-6. «matter and motion.»
- Moore, J.T. (2011). Chemistry For Dummies (2 edición). John Wiley & Sons. ISBN 978-1-118-00730-3.
- O'Connor, J.J.; Robertson, E.F. (February 1996a). «Special Relativity». MacTutor History of Mathematics archive. University of St Andrews. Consultado el 1 de abril de 2014.
- O'Connor, J.J.; Robertson, E.F. (May 1996b). «A History of Quantum Mechanics». MacTutor History of Mathematics archive. University of St Andrews. Archivado desde el original el 28 de octubre de 2019. Consultado el 1 de abril de 2014.
- Oerter, R. (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics. Pi Press. ISBN 978-0-13-236678-6. (requiere registro).
- Penrose, R.; Shimony, A.; Cartwright, N.; Hawking, S. (1997). The Large, the Small and the Human Mind. Cambridge University Press. ISBN 978-0-521-78572-3.
- Penrose, R. (2004). The Road to Reality. ISBN 978-0-679-45443-4.
- Rosenberg, Alex (2006). Philosophy of Science. Routledge. ISBN 978-0-415-34317-6.
- Schrödinger, E. (1983). My View of the World. Ox Bow Press. ISBN 978-0-918024-30-5.
- Schrödinger, E. (1995). The Interpretation of Quantum Mechanics. Ox Bow Press. ISBN 978-1-881987-09-3.
- Singer, C. (2008). A Short History of Science to the 19th Century. Streeter Press.
- Smith, A. Mark (2001). Alhacen's Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen's De Aspectibus, the Medieval Latin Version of Ibn al-Haytham's Kitāb al-Manāẓir, 2 vols. Transactions of the American Philosophical Society 91 (4–5). Philadelphia: American Philosophical Society. ISBN 978-0-87169-914-5. OCLC 47168716.
- Smith, A. Mark (2001a). «Alhacen's Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen's "De aspectibus", the Medieval Latin Version of Ibn al-Haytham's "Kitāb al-Manāẓir": Volume One». Transactions of the American Philosophical Society 91 (4): i-clxxxi, 1-337. JSTOR 3657358. doi:10.2307/3657358.
- Smith, A. Mark (2001b). «Alhacen's Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen's "De aspectibus", the Medieval Latin Version of Ibn al-Haytham's "Kitāb al-Manāẓir": Volume Two». Transactions of the American Philosophical Society 91 (5): 339-819. JSTOR 3657357. doi:10.2307/3657357.
- Stajic, Jelena; Coontz, R.; Osborne, I. (8 de abril de 2011). «Happy 100th, Superconductivity!». Science 332 (6026): 189. Bibcode:2011Sci...332..189S. PMID 21474747. doi:10.1126/science.332.6026.189.
- Taylor, P.L.; Heinonen, O. (2002). A Quantum Approach to Condensed Matter Physics. Cambridge University Press. ISBN 978-0-521-77827-5.
- Thurston, H. (1994). Early Astronomy. Springer.
- Tipler, Paul; Llewellyn, Ralph (2003). Modern Physics. W. H. Freeman. ISBN 978-0-7167-4345-3.
- Toraldo Di Francia, G. (1976). The Investigation of the Physical World. ISBN 978-0-521-29925-1.
- Walsh, K.M. (1 de junio de 2012). «Plotting the Future for Computing in High-Energy and Nuclear Physics». Brookhaven National Laboratory. Archivado desde el original el 29 de julio de 2016. Consultado el 18 de octubre de 2012.
- Young, H.D.; Freedman, R.A. (2014). Sears and Zemansky's University Physics with Modern Physics Technology Update (13th edición). Pearson Education. ISBN 978-1-292-02063-1.
Enlaces externos
Wikcionario tiene noticias relacionadas con F%C3%ADsica.- Real Sociedad Española de Física Facultad de Ciencias Físicas. UCM.
- Revista Española de Física